

JOURNAL OF PHARMACEUTICAL ANALYSIS

DEVELOPMENT AND VALIDATION FOR NEW ANALYTICAL METHOD OF TIZANIDINE BY RP-HPLC

¹Sujita Kumari, ²Obed Singh

¹Master Scholar, ²Associate Professor ^{1,2}Department of Quality Assurance, Shree Dev Bhoomi Institute of Education, Science and Technology, Uttarakhand Technical University, Dehradun, Uttarakhand, India

Abstract

A new HPLC method development and validation for the analysis of Tizanidine in bulk and pharmaceutical formulation was developed and validated. The method was validated according to ICH validation parameters like accuracy, linearity, precision, robustness. The UV spectra for the standard solution was scanned in the wavelength of 200nm to 400nm. The iso-bestic point was determined at 318nm. Peak of Tizanidine was resolved with the Mobile phase of 50:50 v/v of water and methanol and by adjusting the pH to 4.0 with ortho-phosphoric acid or sodium hydroxide and the satisfactory result in term of retention time, peak area, symmetry was obtained. All the analysis parameters were carried out using Shimadzu C18 column (15cm×4.6mm internal diameter, 5μ particle size) and the peak of Tizanidine showed well resolved at wavelength of 318 nm. The retention time of Tizanidine was found to be 5.574minute at the flow rate of 1.0 ml per minute and at 20μl of sample. The regression coefficient(r²) was found to be 0.99972 for standard solution and 0.99964 for test solution, which is within the acceptance criteria. The percentage recovery of assay was 99.36% to 100.59%.

Index Terms: Tizanidine, RP-HPLC, Validation

1. Introduction:

Chromatography refers to the methods used for isolating, identifying, and analyzing the chemical constituents in complex mixtures. This technique is frequently employed, much like spectroscopy, and serves as a powerful tool for both preparatory and analytical applications, yielding compounds of very high purity. It involves the separation of mixture components based on their movement rates through a stationary phase (column) driven by a gaseous or liquid mobile phase; this is a straightforward definition of chromatography¹.

Chromatography is a technique utilized to separate a mixture by distributing its constituents between two distinct phases. The stationary phase remains fixed, while the mobile phase transports the mixture's components through the chosen medium. The stationary phase imposes constraints on various components, causing them to move more slowly than those in the mobile phase. The movement of these components within the mobile phase is influenced by the nature of their interactions with both the mobile and stationary phases. Variations in factors such as the solubility of specific components in the mobile phase and their affinity for the stationary phase result in differential movement speeds, thereby enabling the effective separation of the mixture's components.

Liquid chromatography was developed in 1906 by the Russian botanist Mikhail Tsvet during his efforts to isolate chlorophylls from plant extracts. This significant achievement earned him the title of the Father of Chromatography, more specifically the Father of Liquid Chromatography. Throughout the early 1900s, he continued to explore chromatography, primarily focusing on the separation of plant pigments such as carotenes, xanthophylls, and chlorophyll. The term 'chromatography,' meaning 'color writing,' was coined due to the distinct colors of these components (yellow, orange, and green). A novel form of chromatography emerged in the 1930s and 1940s, which has continued to be a vital and effective method for various separation and purification processes.²

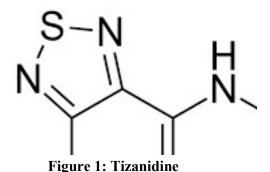
A High Performance Liquid Chromatography (HPLC) method was created in 1960. It is the most widely used analytical method for identifying, quantifying, and separating any mixture of constituents. Non-volatile species such amino acids, proteins, nucleic acids, hydrocarbons, carbohydrates, medications, terpenoids, insecticides, antibiotics, steroids, organic metal species, and many inorganic chemicals can all be isolated with it. With the aid of relative affinity differences, the solvent in HPLC procedures is compelled to split samples into distinct constituents at pressure of up to 400 atmospheres. The HPLC column section has dimensions of 30 mm to 250 mm in length and 2.1 mm to 4.6 mm in width. Furthermore, the HPLC segments are made up of smaller, sorbent particles with a typical molecular size of 2.

2. Principle of HPLC

A separation column separates the stationary and mobile phases during purification. A granular substance containing microscopic porous particles serves as the stationary phase in a separation column. The mobile phase is the solvent or solvent mixture that is pushed through the separation column under high pressure. Through a valve with a linked sample loop—a tiny capillary or stainless steel tube—a syringe is used to feed the sample into the mobile flow regime from the pump to the separation column. The HPLC program generates a chromatogram upon completion of this operation or run. The chromatogram makes it possible to identify and measure the various chemicals.

Because of their interactions with the stationary phase, the components of a mixture subseque ntly migrate through the column at different speeds.

A appropriate detector recognizes a compound when it exits the column and is transmitted as a signal to the computer's HPLC software³.


3. Tizanidine

Tizanidine is a frequently prescribed muscle relaxant that has been associated with infrequent cases of acute liver damage, some of which have resulted in fatalities⁴.

Pharmacodynamics: Tizanidine is a fast-acting medication utilized to alleviate muscle spasticity when necessary for specific tasks. It functions as an agonist at Alpha-2 adrenergic receptor sites, mitigating symptoms of muscle spasticity and facilitating the performance of routine daily activities. In studies involving animal models, Tizanidine has not demonstrated direct effects on skeletal muscle fibers or the neuromuscular junction, nor has it exhibited a significant impact on monosynaptic spinal reflexes, which involve the interaction between a single sensory neuron and a single motor neuron. The occurrence of muscle spasms and clonus has been shown to be reduced by tizanidine. It exhibits a more pronounced effect on

polysynaptic reflexes, which entail the communication of multiple interneurons (relay neurons) with motor neurons that trigger muscle movement⁵.

Adverse Drug Reactions: Drowsiness, dizziness, weakness, feeling nervous, blurred vision, flu-like symptoms, dry mouth, trouble speaking, abnormal liver function tests, runny nose, sore throat, urination problems, vomiting, constipation, or uncontrolled muscle movements are some of the adverse effects of TZN.

4. Validation parameters recommended by FDA, USP and ICH are as follows

a. System Suitability

This is an essential component of liquid chromatography techniques employed to assess the suitability, efficiency, resolution, and reproducibility of the chromatographic method for analysis. The evaluation of the system's suitability involves the calculation of several factors, such as peak resolution, peak tailing, the number of theoretical plates, a nd overall efficiency⁶.

b. Accuracy

The accuracy of an analytical method refers to how closely the obtained value matches the accepted true or reference value. Accuracy is expressed as a percentage recovery, which is determined by assessing the known added quantity of analyte (80%, 100%, 120%) in the sample, or by calculating the deviation between the average result and the accepted true value, factoring in the confidence interval. The International Conference on Harmonization (ICH) advises that accuracy should be evaluated by performing at least nine measurements across a minimum of three different concentrations within the specified range (i.e., three concentrations and three replicates for each concentration)⁷.

c. Linearity

Linearity (within a specific range) is the capacity of an analytical technique to produce test findings that are precisely proportionate to the concentration of the sample analyte. According to the ICH Guideline, linearity should be evaluated using a minimum of five concentrations. An analytical technique's range is the difference between its upper and lower levels, and it is commonly measured with linearity, accuracy, and precision using the method procedure⁸.

d. Precision

The level of consistency among measurements obtained from various samplings of the same uniform sample is referred to as the precision of the analytical method. Repeatability: The

repeatability of a testing procedure is determined by conducting complete independent assessments of the same uniform batch of material on designated samples, and this serves as an indicator of the method's precision under typical laboratory conditions. It represents a short-term analytical method conducted under identical operations⁹.

e. LOD

The analytical limit refers to the minimum quantity of an analyte present in a sample that can be detected, but it is generally not reported as an exact measurement. Typically stated as the concentration of the analyte in the sample, the focus of the limit of detection (LOD) can be the signal-to-noise ratio (S/N) at $3:1^{10}$.

f. LOQ

The quantification limit for a specific analytical method is defined as the lowest amount of a sample that can be accurately and precisely measured. The LOQ is typically derived from the determination of a signal-to-noise ratio (S/N ratio) of 10:1, by injecting standards that produce this ratio and exhibit an acceptable level of percent relative standard deviation¹¹.

g. Robustness

The robustness of an analytical procedure refers to its capacity to endure slight, deliberate variations in method parameters such as pH, temperature, mobile phase composition and instrumental settings while demonstrating reliable performance under standard operating conditions. The robustness of an analytical procedure refers to its capacity to endure slight, deliberate variations in method such as pH, temperature, mobile phase composition, and instrument settings while maintaing reliability under standard operating conditions. The robustness of an analytical procedure refers to its capability to endure small, deliberate variations in method parameters (such as pH, temperature, mobile phase composition, and instrumental settings) while maintaining reliability under standard operating conditions ¹².

5. Methodology

- a. Mobile Phase: A total of 100 ml was prepared by combining 50 ml of methanol with 50ml of water. The pH of the mixture was adjusted to 4.0 by adding a few drops of orthophosphoric acid. Subsequently, the solution was filtered using Mobile phase filter paper and sonicated for 15 minutes before use.
- b. Diluent: Mobile Phase
- **c. Preparation of Standard Solution:** Weighed accurately 10 mg Tizanidine working standard into a 100 ml volumetric flask. Dissolve and diluted to volume with Mobile Phase. Dilute 1 ml of this solution to 10 ml with same solvent mixture and mix. (0.01mg/ml)
- **d. Preparation of sample solution:** Accurately weighed 20 tablets were ground to obtain fine powder. Equivalent to 10 mg of Tizanidine sample were weighed and transferred to 100 ml of volumetric flask and dissolved in Mobile Phase. The flask volume was made up to mark with mobile phase and was shaken. Further 1 ml of the resulting solution was 10 ml with mobile phase. (0.01mg/ml)
- e. Determination of Working Wavelength (λ max)

A volume of 20 μ l of the TZN standard solution (0.01mg/ml) was introduced into the HPLC system at various wavelengths, resulting in a chromatogram with acceptable resolution at 318 nm.

f. Optimum Chromatographic Conditions

The peaks of TZN were distinctly separated using a solvent system composed of water and methanol in a 50:50 ratio, with the pH adjusted to 4.0 through the addition of orthophosphoric acid. The optimized chromatographic conditions are detailed below.

• Column: Shimadzu C₁₈ Column (150mm ×4.6mm, internal diameter: 5μ particle size)

■ **Mobile Phase:** Water and Methanol (50:50% v/v)

Flow Rate: 1.0 ml/minute
Detector: UV-Detector
Injection Volume: 20µl
Wavelength: 318nm
Oven Temperature: 30°C

6. Results and Conclusion:

The UV spectra of the standard solutions were analyzed within the wavelength range of 200 to 400 nm. The absorptivity values of the drug at the optimal wavelength were calculated, and the isobestic point was determined to be at 318 nm. The information regarding linearity is presented below.

S.N.	Concentration (µg/ml)	Absorbance
1.	10	0.123
2.	20	0.248
3.	30	0.373
4.	40	0.497
5.	50	0.624

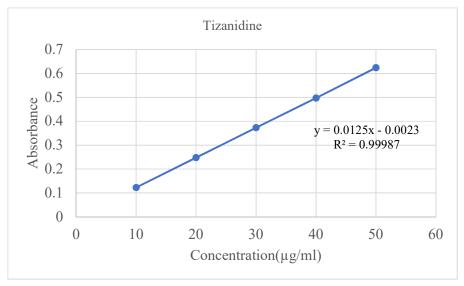


Fig.2: Calibration graph for Tizanidine

Based on the aforementioned experimental findings, it was found that a freshly developed technique to perform the simultaneous estimation of Tizanidine was straightforward, particular, and high resolution. Creating an HPLC method for Tizanidine quantitative qualification was the goal. The following is a discussion of the stud's findings and outcomes.

Using a UV Spectrophotometer, the Tizanidine standard sample was scanned at wavelengths between 200 nm to 400 nm, and the wavelength was fixed to 318 nm. When it comes to HPLC, columns come in an array of configurations. However, for our investigations, the Shimadzu C_{18} Column (150mm \times 4.6mm, internal diameter: 5μ particle size) was chosen above other columns, and the peak of Tizanidine demonstrated good resolution at 318 nm.

Specificity: There was no visible peak on the bands when formulation's diluent and excipients were used, indicating a high degree of specificity for the recommended method.

Linearity: Linearity was observed over the range of 80% to 120% (80%, 90%, 100%, 110%, and 120%). It was discovered that the regression coefficient(R²) was 0.99975 for Standard Solution and 0.99928 for Test Solution, which was substantially within the acceptable bounds.

Accuracy: Tizanidine Percentage recovery was determined to be between 99.36 to 100.59%, which is well within the allowed range and observed that there was essentially no drug interference with the formulation's excipients or medications.

Intermediate Precision: The Assay percentage of three analysts on different was found to be 99.58%, 98.84% and 99.19% respectively. The repeatability was 1.064 and the intermediate precision was 0.692, which are within the acceptance criteria.

Robustness: It is the another Validation parameter for the HPLC method, and it was observed that there was a slight variation in the drug's retention time that nevertheless met the acceptance criteria.

It was discovered that the technique is easy to use, accurate, precise, and appropriate for routine analysis of Tizanidine.

The approach that has been devised is simple and convenient to utilize for Tizanidine Tablet routine quality and stability determination.

An entirely novel HPLC technique has been developed and authorized for use in bulk as well as pharmaceutical formulation analysis of tizanidine. The procedure's robustness, accuracy, linearity, specificity and precision were all proven. For Tizanidine estimation in pharmaceutical formulations, the proposed method's suitability was verified by its low % RSD values and satisfactory percentage recoveries. This developed technique produces the highest recovery, with an average recovery of almost 100% for every component.

It was determined that the method's precision and accuracy were satisfactory. The technique was shown to be straightforward, accurate and exact; as such, it is appropriate for regular dosage form analysis and stability investigation with Tizanidine. The devised approach is simple to use and easy for routinely determining Tizanidine and stability.

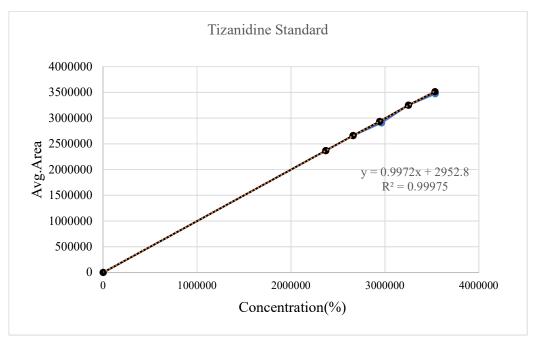


Fig. 3: Linearity curve of Standard

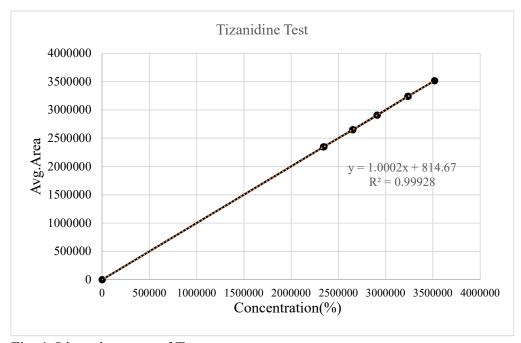
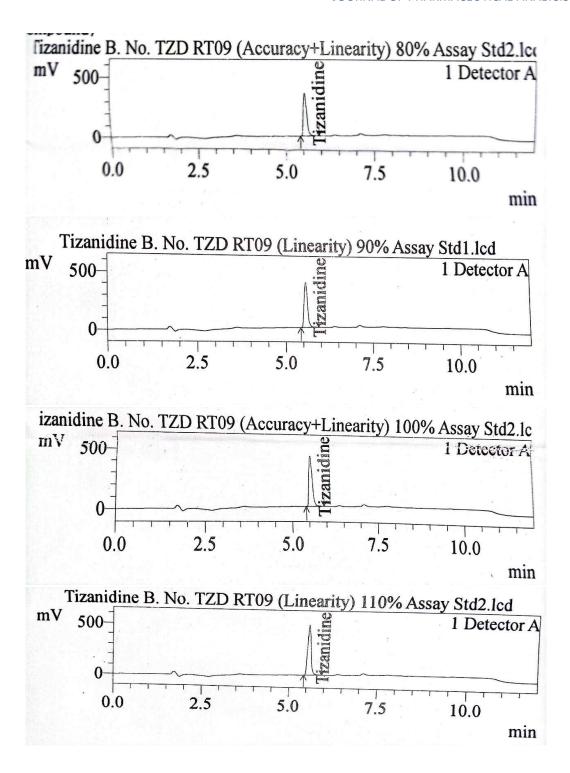



Fig. 4: Linearity curve of Test

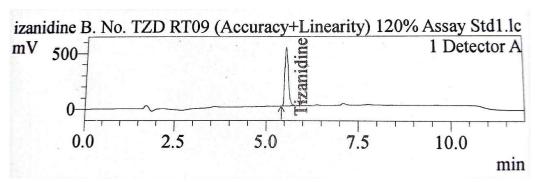


Fig.4: Linearity of standard at 80%, 90%, 100%, 110% & 120%

7. References:

- 1. Arunachalam A and Shankar M: Stability studies: a review. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry 2008; 1(4): 184-195.
- 2. Naveed S, Basheer S and Qamar F: Stability of a dosage form and forced degradation studies. Journal of Bioequivalence & Bioavailability 2016; 8(4): 191-193.
- 3. Kommanaboyina B and Rhodes CT: Trends in stability testing, with emphasis on stability during distribution and storage. Drug Development and Industrial Pharmacy 1999; 25(7): 857-868.
- 4. Bhuyian HU, Rashid HAR, Mohsin Md and Tahera KT: An overview: Stability study of pharmaceutical products and shelf life prediction. European Journal of Biomedical and Pharmaceutical sciences 2015; 2(6): 30-40.
- 5. Sengupta P, Chatterjee B and Tekade RK: Current regulatory requirements and practical approaches for stability analysis of pharmaceutical products: A comprehensive review. International Journal of Pharmaceutics 2018; 543(1-2): 328-344.
- 6. Bajaj S, Singla D and Sakhuja N: Stability testing of pharmaceutical products. Journal of Applied Pharmaceutical Science 2012; 2(3): 129-138.
- 7. Maheshwari R, Kar M and Chourasiya Y: Stability and degradation studies for drug and drug product. In book: Dosage form design considerations 2018; 7(6): 225-257.
- 8. Quadri SS, Sonwane LV, Poul B and Kamshette S: Review on stability indicating assay methods (SIAMS). Pharma Tutor 2014; 2(8): 16-31.
- 9. Komka K and Kemeny S: A modified error model for the assessment of stability of pharmaceutical products. Chemometr intell lab syst 2004: 72 (2): 161-65.
- 10. Blessy M, Ruchi DP, Prajesh NP and Agrawal YR: Development of forced degradation and stability indicating studies of drugs A review. Journal of Pharmaceutical Analysis 2014; 4(3): 159-165.
- 11. Thorat P, Warad S, Solunke R, Ashok S, Anagha B and Asha S: Stability study of dosage form: An innovative step. World Journal of Pharmacy and Pharmaceutical Sciences 2014; 3(2): 1031-1050.
- 12. Suthar N and Choudary M: A review on stability studies of pharmaceutical products. International Journal of Applied Pharmaceutical and Biological Research 2017; 2(3): 67-75.

- 13. Agarwal V and Sharma D: Stability testing of Active Pharmaceutical and Scientific Innovation. Journal of Pharmaceutical and Scientific Innovation 2012; 1(2):18-23.
- 14. Tollefson AE, Hermiston TW, Lichtenstein DL, Colle CF and Tripp RA: Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature 1998; 392 (6677): 726-730.
- 15. Bakshi M and Singh S: Development of validated stability-indicating assay methods-critical review. Journal of Pharmaceutical and Biomedical Analysis 2002; 28(6): 1011-1040.
- Marin A and Barbas C: LC/MS for the degradation profiling of cough-cold products under forced conditions. Journal of Pharmaceutical and Biomedical Analysis 2004; 35(5): 1035-1045.
- 17. Singh S, Junwal M, Modhe G, Tiwari H and Kurmi M: Forced degradation studies to assess the stability of drugs and products. TRAC- Trends in Analytical Chemistry 2013; 49: 71-88.
- 18. Singh R and Rehman ZU: Current trends in forced degradation study for pharmaceutical product development. Journal of Pharmaceutical Education and Research 2012; 3(1): 54-63.
- 19. Devala Rao GA. Text book of Pharmaceutical Analysis. 4th Ed. New Delhi: Birla publications; 2005. 5-10.
- 20. Gurudeep C and Sham KA. Instrumental methods of Analysis.5th ed. Mumbai: Himalaya publishing home; 2005. 25-66.
- 21. Beckett AH, Stenlake JB. Practical Pharmaceutical Chemistry. 4thed. New Delhi: CBS publishers and distributors; 1997. 284-297.
- 22. Willard HM, Merritt LL, Dean JA, Settle FA. Instrumental method of Analysis.7th ed. New Delhi: CBS publication and distributors; 1986. 513-514.
- 23. Gurudeep C and Sham KA. Instrumental methods of Analysis. 5 th ed. Mumbai: Himalaya publishing home; 2005. 108-109.
- 24. Beckett AH, Stenlake JB. Practical Pharmaceutical Chemistry. 4th ed. New Delhi: CBS publishers and distributors; 1997. 163-165.
- 25. Khopkar SM. Basic concepts of analytical chemistry. 3rd ed. New Delhi: New age international (P) limited publishers; 2008. 198-199.
- 26. Douglas SA, James F and Timothy N. Principle of instrumental analysis 5th ed. Singapore: Thomas Brooks Cole; 2004. 739-740
- 27. ICH Q2 (R1) validation of analytical procedures: Text and methodology [online]. 2005[cited2014November]; Available from: URL:htp://www.ich.org/fileadmin/public website/ICH products/ Guidelines Quality/ Q2 R1 Guidline.pdf
- 28. National Center for Biotechnology Information. PubChem Database. Tizanidine,CID=5487,https://pubchem.ncbi.nlm.nih.gov/compound/Tizanidine#section=Solubility (accessed on June 1, 2020).
- 29. Semenchuk MR, Sherman S. Effectiveness of tizanidine in neuropathic pain: an open-label study. Journal of Pain 2000; 1(4): 285-292.
- 30. British Pharmacopeia. Vol II. London: Medicines and Healthcare products Regulatory Agency; 2016. 1064-1065.

- 31. Mahadik KR, Paradkar AR, Himani A, Neeraj K. Stability-indicating HPTLC determination of tizanidine hydrochloride in bulk and pharmaceutical formulation. Journal of Pharmaceutical and Biomedical Analysis 2003; 33: 545-552.
- 32. Wate SP, Nimje H, Dharkar DP, Razdan R. Simultaneous RP-HPLC determination of nimesulide and tizanidine in tablets. Indian Journal of Pharmaceutical Sciences 2007; 69(2): 281-283.
- 33. Lakshmana R, Praveen DV. Simultaneous estimation of rofecoxib and tizanidine hydrochloride in tablets by RP-HPLC. Asian Journal of Orgaanic Chemistry 2010; 22 (1): 95-99.
- 34. Dudhe PB, Jadhar S, Sawarkar V, Nagras MA. Method development and validation for simultaneous estimation of aceclofenac and tizanidine in bulk and marketed formulation. International Journal of Pharmatech Research 2013; 5(3): 1212-1216.
- 35. Tariq A, Shoaib MH, Yousuf RI, Siddiqui F, Ali H, Ahmed FR. Development and validation of RP-HPLC method for determination of tizanidine in human plasma. African Journal of Pharmacy 2014; 8(7): 199-205.
- 36. Lakshmi S, Devarajan. Spectrophotometric and HPLC method for simultaneous estimation of tizanidine and valdecoxib from tablets. International Journal of Chemtech Research 2009; 1(1): 96-102.
- 37. Padmanabh BD, Neha MS, Sonali DS, Vishal T, Pawan K. Development and validation of stability indicating HPTLC method for simultaneous estimation of aceclofenac and tizanidine hydrochloride in pharmaceutical dosage form. European Journal of Biomedical and Pharmaceutical Sciences 2017; 4(8): 369-374.
- 38. Reddy ST, Saritha B, Giri A. Quantitative estimation of tizanidine in pharmaceutical formulations by visible spectrophotometry using gold (III). Int J Pharm Sci Rev Res 2014; 27(1): 97-101.
- 39. Rawool N, Venkatchalam A. Development and validation of a rapid HPLC method for the simultaneous estimation of nimesulide and tizanidine hydrochloride in pharmaceutical tablet dosage form. Analytical Chemistry Indian Journal 2013; 12(11): 408-414.
- 40. Kumar SR, Nathan PS, Nallasivan PK, Solomon WDS, Venkatnaryayanan. A validated reversed phase HPLC method for the determination of aceclofenac and tizanidine in tablets. Asian Journal of Pharmaceutical Research and Health Care 2010; 2(1): 84-94.
- 41. Vaidya VV, Singh GR, Choukekar MP, Kekare MB. Simultaneous RP-HPLC determination of aceclofenac, paracetamol and tizanidine in pharmaceutical preparations. European Journal of Chemistry 2010; 7(1): 260-264.
- 42. Samel A, Raman B. Simultaneous estimation of related impurities of tizanidine Hcl in its API by RP-HPLC. Asian Journal of Chemistry 2009; 21(1): 176-182.
- 43. Sapari S, Prabhu PP, Subrahmanyam EVS, Kaneria J, Bechara S, Sabaraya AR. Development of new analytical methods and their validation for the determination of tizanidine Hcl in bulk and marketed formulation. Asian Journal of Biomedical and Pharmaceutical Sciences 2013; 3(23): 57-60.
- 44. Labhade SD, Chaudhari SR, Saudagar RB. Development and validation of RP-HPLC method for simultaneous determination of diclofenac sodium and tizanidine hydrochloride in bulk and tablet formulation. Journal of Analysis and Pharmaceutical Research 2018; 7(2): 244-247.

- 45. Ravisankar P, Devala RG. RP-HPLC method for the separation of paracetamol, Tizanidine, aceclofenac, chlorzoxazone: Application to tizanidine determination in tablet dosage form. International Research Journal of Pharmacy 2013; 4(6): 156-163.
- 46. Chandrashekhar N, Patel HR, Karvekar MD, Suresh BAR. Simultaneous estimation of aceclofenac, paracetamol and tizanidine in their combined dosage forms by spectrophotometric and RP-HPLC method. Journal of Analysis and Bioanalytical Techniques 2011; 2(4): 1-5.
- 47. Mohamed IW, Belal FF, Manal IE. Spectrophotometric determination of tizanidine and orphenadrine via ion pair complex formation using eosin Y. Chemistry Central Journal 2011; 5(60): 1-9
- 48. Gondane SJ, Deshpande MM, Mahajan MP, Sawant SD. Spectrophotometric method development and validation for estimation of tizanidine and aceclofenac in bulk drug and tablet formulation. International Journal of Chemtech Research 2011; 3(2): 620-624.
- 49. Talele GS, Bhavsar AS, Fursule RA, Surana SJ. RP-HPLC estimation of tizanidine hydrochloride and valdecoxib in combined dosage forms. Indian Journal of Pharmaceutical Sciences 2006; 68(5): 641-643.
- 50. Mohamed AH, Fathalla B, Mahmoud AO, Sayed D, Saha Z, Safaa FS. Simultaneous determination of tizanidine, nimesulide, aceclofenac and paracetamol in tablet and biological fluids using micellar liquid chromatography. Journal of Chromatographic Science 2017; 1-9.
- 51. Vaishali N, Tajne MR, Upadhaye K, Bakhle S, Deshpande S, Wadetear R. Simultaneous estimation of valdecoxib and tizanidine by vierodt's and Q-analysis UV spectrophotometric method. Indian J Pharm Sci 2005; 624-626.
- 52. Chakravarty D, Charde RM, Charde MS, Tajne MR. Estimation of tizanidine Hcl by UV spectrophotometric method. Journal of Pharmaceutical Research 2010; 3(9): 2107-2109.